
___ _______ __________ ___________________ _____
__ | / /__ /____(_)_ /__________________________ ___________ ___ __ __(_)__ /_______ /_
__ | /| / /__ __ _ /_ __/ _ _ ___/__ __ \ __ `/ ___/ _ \ __ /_/ /_ /__ /_ __ \ __/
__ |/ |/ / _ / / / / / /_ / __/(__)__ /_/ / /_/ // /__ / __/ _ ____/_ / _ / / /_/ / /_
____/|__/ /_/ /_//_/ __/ ___//____/ _ .___/__,_/ ___/ ___/ /_/ /_/ /_/ ____/__/

/_/

HSR CHALLENGE 2015
Fast & Furious

Presentation 06.11.15

Agenda

• Team / Organisation

• What we did

• Problems

• Next steps

• Questions / discussion

Whitespace Team:

• Stefan Kapferer

• Roberto Cuervo

Team Organisation

• Both part time students

• Collaboration only possible on sundays and
mondays

• Pair Programming

Dev-Env Setup day

• Projects forked

• MVN changes (build without local
dependencies)

• CI Setup (Jenkins)

• Own artefact repositories created, were
snapshots/releases can be deployed

• Snapshots automatically deployed to the
SNAPSHOT-Repository after each commit and
successful build

Research:
How can we recognize the track?

• Gyro Z sensor Data

• Basic idea :

– Build a function graph.

– Find the period of the graph.

– If the signal repeats (period), we know that we
passed one round. (it should be possible to
recognize this after 2-3 rounds)

• First idea:
– Interpolate data to get a function

– Integrate function to compare regions

• Conversation with Prof. Augenstein
– Our mathematical approaches were too complex

– Moving averages to cope with the signal noise

– How find the track:
• regularly split the track into two parts and compare them. If

they are equal it's maybe a candidate for a match.

– Just use the signal in order to find out if we drive
straight, left or right

– Pattern like “left-straight-left-left-right…”

– Search for a repetition in that pattern

Research:
How can we recognize the track?

Research: How can we recognize the
track? (II)

• Data visualization

• Easier to recognize possible patterns

• Raw data, a.k.a the signal with noise
• In order to recognize the track, it’s necessary to

remove the big signal variations
• Moving averages

• This curve is softer, without big peaks or jumps

Research: How can we recognize the
track? (II)

Right-Left-Straight...

• Standard deviation of the gyro z value

– Better straights detection

• Read the values, when they reach
certain thresholds, create a new
instance of the TrackPart class in
which we save the direction, start
and end times.

• When the values reach another
threshold, we create again the
corresponding instance.

• Use the standard deviation in
order to avoid the detection of a
STRAIGHT-Part between every
curve

• Recognize curves and straights

• Split the track into simple parts

– TrackPart Class

Right-Left-Straight...

Pattern:
STRAIGHT- RIGHT- LEFT- RIGHT- LEFT- STRAIGHT- LEFT...

• Compare the given round time with the added time of all our
track parts

• If this difference is smaller than a threshold, we have a best
match:

Position

• PositionDetector actor is created as soon as the
track is matched

– Keeps the track model

• Similar as the TrackRecognizer, detects direction
changes on the basis of the gyro values

• Based on these direction changes, it updates the
current car position on the track

• Updates the start and end times of each track
part

Position

• Model extended in order to save the light barriers

• PositionDetector uses them to correct the
position when lost

Position

First driving

• First approach:
– Start speeding up as soon as we are in a straight

– Brake down before getting into the curve

– Problem: how much should we reduce the power?

• Current Approach:
– Speed up in straights until we get penalties

– In the curves we keep the power from the previous
straight

– As soon as we receive a penalty, we map the penalty
to the track part and we save the power value

– Next round, we drive with less power in this track part

Round Time Comparison Graph

• Lost position while speeding up

– Change thresholds during the race

– Improved logic with light barriers for correction

• Speedup in small straight parts without
barriers

– No penalties

• Curves

– How much power is maximum

– No working approach till now

Problems

What did we learn today 6.Nov.15?

• We cannot use the round time message for
pattern matching

• We don‘t consider latency

• Use as less constants as possible

• Our logic was basically not so bad at all...

• Reconsider pattern matching algorithm,
without round time message

• Consider latency

• Configure algorithm constants dynamically

• Curve logic

• Improve speeding up in straights

• Improve error tolerance

Next steps

Sources

• Prof. Augenstein (Math)

• Wikipedia (Moving Averages)

• AKKA (akka.io)

• Prof. Sourlier (Physics)

Questions?

Thanks for your attention.

