
HSR CHALLENGE 2015
FAST AND FURIOUS

WOLFGANG
GIERSCHE

wgiersche@gmail.com
wgi@zuehlke.com

mailto:wgiersche@gmail.com
mailto:wgi@zuehlke.com

THE CHALLENGE
• Write a method that…

• takes some numerical input

• calculates something, and…

• outputs a single number between 0 and 255

• to minimise some other single numerical output

WELL, YES AND…

• Design it well

• Write and test it well

• Document it well (!!!)

• Publish it all on Github

Your auto-pilot

Some container

My infrastructure

stomp over ws://

AMQP (rabbitmq)
input

output

10.753s

POWER TO
THE WHEELS

Integers [0, 255] translate into
Voltage  

(Pulse width modulated)

VELOCITIES
AND

PENALTIES
Light barriers provide

• velocity data
• out-of-tarmac simulation 

by applying penalty brakes
• round time information

XBEE RADIO
DATA

collecting speed information
over the air

THE SLOT CAR
• RAZOR 9DOF Sensor  

 3 x mag, 3 x gyro, 3 x acc

• Bluetooth

• 5V Lithium Battery

Competitions Team Server

RabbitMQ

Race ConsoleRelay

JHipster

YOU

Spring Cloud
Config Server

Kobayashi

JHipster

Internet of
Things

Microservices

Machine
Learning

Reactive
Programming Data Analytics

Real Time Event
Processing

THE CHALLENGE

• Concurrency

• Fault Tolerance

• Noise

• Unpredictable latency

• Little time to learn

• Physical modelling

AGAIN: THE CHALLENGE
• Write a method that…

• takes some numerical input

• calculates something, and…

• outputs a single number between 0 and 255

• to minimise some other single numerical output

INPUT: RACE EVENTS

• Race start

• Race stop

• Velocity measurement

• Penalty messages

• Sensor readings at 50Hz

• Round passed

RESILIANCE AND CONCURRENCY

• Actors or similar primitives

• Streams

• Event based design

• Starter Kit: Typesafe Akka

DESIGN CONSIDERATIONS
• First comes race track recognition

• Read about “unsupervised” learning, it may help a bit.

• “Learning” should be parallel to driving

• Strategies may develop during race time

• The street looks different at higher speed.

• Parametrise your algorithms

RECOMMENDATIONS
• Get your hands dirty on data visualisation

• Make yourself comfortable with a minimum of statistics and math
(average, standard deviation,…)

• Do NOT use classic concurrency primitives, such as @Async,
synchronised, etc - unless you really love trouble.

• Consider using state-of-the-art technology, even distributed ones 
R Studio, Mathlab, Spark, Storm, Akka, RXJava, ReactJS…

• …but be careful - they’re big!

TECHNICAL ENTRYPOINTS

• Akka Starter kit:  
http://github.com/FastAndFurious/AkkaStarterKit

http://github.com/FastAndFurious/AkkaStarterKit

